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INTRODUCTION

In a typical large engineering program, parametric
techniques are used to estimate total program costs
which must then be distributed (or “spread”) over time
according to some schedule for hudgetary and planning
purposes. These costs are often spread according to some
well-defined mathematical relationships designed to
stimulate how costs are incurred as a function of time.
The Beta distribution curve is one example of this kind of
mathematical model. It has been used quite successfully
for this purpose by parametric analysts and estimators
for some time.

In addition to establishing a program cost estimate
initially, a need exists to monitor and re-establish, if
necessary, the estimate at completion (EAC) as cost
information becomes available during the course of a
brogram. One method to accomplish this is to compute
the labor rates, overhead, and estimated materials costs
required to complete the unfinished tasks. Although this
method may be well-suited to the small dellar value
project, it falls short when applied to the large, high cost
brogram. This paper will demonstrate how the Beta
distribution, in addition to being used to spread total pro-
8ram cost estimates, can also be used to model costs of an
ongoing program in order that an EAC can be calculated,
'I"hl's technique will be shown to be a powerful tool for pro-
viding real-time feedback to management concerning pro-
Bress toward meeting its DPrograin cost objectives. Other
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virtues of the Beta function, its simplicity {the only data
required are the cumulative costs at various time points
in the program) and its flexibility (“what-ifs”, such as
schedule slips, can be evaluated quickly), will become evi-
dent in the discussion.

DESCRIPTION OF THE BETA CURVE MODEL

The spreading function used for distributing costs over
time was originally developed by E.D. Lupo, NASA-JSC.
The concept was further developed by A. Ferguson, also
of NASA-JSC (Reference 1), The Cumulative cost curve,
expressed as a fractional-cost, fractional-time relation-

ships, is:

C(t) = A(10t* — 20t + 10t4) + B(10t* — 20t* + 10t%) + (5t — 4t%) [1]

Where t is the fraction of time elapsed in the program and
C(t) is the fraction of cost consumed at time t. Both t and
C{t) are constrained to the interval (0,1). The cost rate
curve {which is the derivative of the cumulative cost
curve) can be expressed as:

2]

It can be seen that cost rate curve is a convex combing-
tion of three integral Beta probability functions where
the parameters A,B, and (1-A-B) are the relative weights
given to the three Beta curves. Since the weights must be
non-negative values, then A 0, B 0, and A+B 1.
Although different combinations of A and B yield
different cumulative cost curves, all solutions fall within
the envelope shown graphically in Figure 1 and are
monotonically increasing. These limits can be readily
understood by referring to Figure 2 which presents the
three Beta curves separately. When A = 1, B=0, the cost
rate curve models an extremely fast-starting program
with a slow finish; when A =0, B=0, the cost rate curve
models a program with a slow start and an extremely fast
finish. Thus extremes in cost rate curves define the
envelope of the cumulative cost curve shown in Figure 1.
All other feasible combinations of A and B result in
cumulative cost curves falling within these limits,

C(t) = Al20t(1 — 1] + BI30t(1 — 1] + (1 - A ~ B)20t3(1 — 1)]
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Figure 2
Effect of Parameter T On Cost Rate Curve

BETA CURVES IN TERMSOF P AND T

Beta curve characteristics are often defined in terms of a
half-way cost fraction (denoted by the letter T} and a
peakedness coefficient {denoted by the letter F). The half-
way cost fraction is defined as the fraction of cost
consumed when one-half of the program time is spent. As
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an illustration, the value of the parameter T is presented
for the three cost rate curves shown in Figure 2. Due to
the nature of the Beta curve as defined by Equation [1], T

is constrained to velues between 0.1875 and 0.8125,

inclusive. The parameter, P, is a number between 0 and 1
which represents a relative measure of the peakedness of
the tost rate corve. The most peaked (i.e. least spread out)
cost rate curve is represented by P=1. The least peaked
(i.e. most spread out) is represented by P=0. It is
interesting to note that, as ' approaches its limits of
0.1875 or 0.8125, the effect of the peakedness coefficient.
is reduced since, for these two values of T, unique
spreading functions occﬁr Figure 3 presents the effect of
P on the cost rate carve. .,
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Figure 3
Effect of Parameter P On Cost Rate Curve

The following equations relate the T and P parameters to
the cost rate curve weighting factors, A and B:

T'=0.625A +0.3125B + 0.1875
P =0.3125B/(0.625A + 0.3125) T<0.5
P =0.3125B/(0.625 — 0.31258 — 0.625A)

(31
[4A]

TN0S5  [4B]

APPROACH

Typically the data that are available for an ongoing
program are cumulative program costs at various dates
into the program. If there are m of these data points,
these can be expressed in the form (Dj, Kj) where
i=1,2,3,..m and where D is the date for which the
cumulative cost, K, is known. Since these are actual costs
and dates, they must be converted to fractional times and
fractional costs in order to be consistent with the form of
Equation [1].
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The first step, expressing each of the dates, D, in térms of
the fractional program time, ¥, is accomplished with the
. following relationship:

Di —Dstart
Dend — Dstart

tj =
(5]

Fipding a scaling factor which expresses each of the
cumulative program costs, K, as a fractional-cost, is the
next step. In fact, the problem can be formulated such

that the calculation of the scaling factor will immediately -

yield the EAC of the program.

Let the criterion for the best fit of the actual cumulative
cost data to C(t) be defined as the selection of that scaling
factor which minimizes the sum of the least squares
(SLS). However, since the spending pattern becomes
better defined the later into a program you are, the later
time points will be more indicative of program comple-
tion costs than earlier ones. Hence, the standard SLS
method should be modified to give more weight to the

later time points. The weighting scheme selected was to

use fractional-time cubed as this weighting factor. Thus
the best, fit criterion becomes a weighted-sum-of-least-
squares (WSLS) expression: Minimize,

fett) — YK

F = WSLS = [61

where Y is the scaling factor and C(t) is defined in

Equation [1].
DISCUSSION OF COMPUTATIONAL TECHNIQUES

There are several way to approach the solution to equa-
tion [6]. First, however, Equation [6] should be examined
to determine what the variables are. The scaling factor,
Y, is obviously a variable, whereas the K and t values are
constants. Since C(t) is a function of A and B, Equation
{6] implicitly requires choices for the values of A and B, as
well. Whether they are treated as constants or as
variables depends on the computational method used.
One computational method i3 simply to assign arbitrary
values to A and B and then solve for Y. The values to be
assigned might, for example, come from another
engineering program of similar size, complexity, and
scope for which these values have been computed from
historical data. If this method is used, A. and B become
constants in Equation [6]. The scaling factor, Y, cor-
responding to the minimum WSLS can then be coniputed
by the standard caleulus technique of setting the first
derivative equal to zero and solving:

ZC(pKit

Yopt = t°K;? (71

The principal disadvantage to this method is the fact that
programs do differ from one another regardless of how
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similar they may appear to be. Thus, assigning a
particular shape of the Beta curve to a new program may
not adequatély allow for its uniqueness.

In recognition of this limitation another approach would
be to use values for A and B which allow the shape of the
Beta curve to be such that it best fits the cost-time data
that the program has already experienced. Thus, unlike
the previous case where the parameters A and B were
gpecified, in this case A and B are treated as variables
and the “best fit” is simoply that combination of A.B, and
Y which minimizes Equation [6]. There are several
computational techniques that eould be used to solve this
problem. Three of these methods (exhaustive search,
partial derivatives, and quadratic programming) are
described in the following paragraphs.

In the exhaustive search technique, a computer
algorithm is set up which ranges over all the feasible
combinations of A and B, computing the corresponding
scaling factor (from Equation [7]) and WSLS for each
combination. Then the values for A,B and Y are selected
based on which combination results in the smallest
WSLS value. The major disadvantage of this technique is
that the algorithm can become somewhat involved since
it must be set up to search in discrete increments for A
end B (such as 0.01) that are computationally
manageable, and then recycled to finer increments as the
true optimum is approached if increased accuracy is
desired. -

A rnore analytical approach is to use partial derivatives
to set up a system of three unknowns. Equation [1] can be
rewritten:

Cit) = AL+ Bf +b 81
of = 1012 — 2015 + 10t [9A]
B = 10t — 20t* + 10t° {98}
T = 5t¢ — 48 [9C]
Therefore, the problem is to minimize:

F = WSLS = Z{[AX;+Bg i+ & i— YK{H?® [10]
K:ZZ[A,s+B[3;+m—YKi[ it =0 [11A]
g = 2T [AC{ + BB |+ §i = YK{|]g itP = 0 [118]
{; = 2T [AQj + BB i + 6i = YKiKjt* = 0 [11C}

After rearranging terms, a set of three linear equations
results which can be easily solved for the unknowns A,B,

and Y.

The primary drawback to this computational scheme is
that there is no assurance that the solution to these equa-
tions will result in non-negative values for A and B. This
disadvantage can be overcome, however, by extending
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the computational scheme to include boundary eondition
checks such that when one is exceeded, the corresponding
variable is set to equal to the boundary value and the
other variables recomputed.

A third approach would be to formulate the problem as a
quadratic programming form. Using the notation
introduced in Equations [8] and [8), the problem is to
minimize! :

F=WSLS = Z([AG;+ BB+ %) - YKjj=1}° {12]

subject to: G = A + B <1 A0, BLO [13]
This is a standard quadratic programming problem
which can be restated and solved as a linear program-
ming problem. (Reference 2). Its advantage over the"
previous method is that the computational algorithm
automatically ensures that the solution will involve only
non-negative values for the variables.

CALCUALTION OF PROGRAM EAC

Whichever method is selected to ecalculate the
parameters, A and B and the scaling factor, Y, the follow-
ing relationship exists for any data point:

YK = C(tj) {14]
Equation [14] can be used to estimate the cumulative pro-

gram cost for any future time interest. For the time point
corresponding to the end of the program:

. C(t
Kenp = CUEND) ‘
Y [15]
But KEND = EAG and C{gND) = C(1) = 1. Therefore,
1
EAC = —
” [16]
SUMMARY

Using the methodology described sbove, the Beta
distribution curve, already used extensively by
parametric analysts for spreading costs over time, can be
as a predictive model for establishing estimates at com-
pletion for large programs. Furthermore, even for those
situations where another method of computing EAC’s is
already established within a company or program, this
method can be used ag a check on the results of the
existing method.
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ESTINATES AT COMPLETIOH GSING BETA CURVES

INTRODUCTION

In a tvpical large engineering program, parametric techniques are used to
estimate total program cosis which must then be distributed (or "spread") over
time according to some schedule for budgetary and planning purposes., These
costs are often spread according to some well-defined mathematical
relationships designed to simulate how costs are incurred as a function of
time. The Beta distribution curve is one example of this kind of mathematical
rmodel which has been used gquite successfully for this purpose by parametric
analysts and estimators for some time,

In addition to establishing a program cost estimate initially, a need exists to
monitor and re-establish, if necessary, the estimate at completion {(EAC) as
cost information becomes available during the course of & program. One method
+o accomplish this is to compute the labor rates, overhead, and estimated
materials costs reguired to complete tha unfinished tasks, Ailthough this
method mavbe well-syited to the small dellar value project, it falls short when
applied tc the large, high cost program. This paper will demonstrate how the
Reta distribution, in addition %o being used tc spread total program cost
estimates; can also be used to model costs of an on-going program in order than
an EAC can be calculated. This technique will he shown to be a2 powerful tcol
for providing real-time feedback to ranagement concerning its progress towarc
meeting its program cost objectives. 45 other virtues; its simplicity {(the
anly data required are the cumulative costs at variocus time points in the
program) and its flexibility ("what-if's", such as schedule slips, can be
evaluated quickly), will become evident in the discussion,

DESCRIPTION OF THE BETA CURVE !MODEL

The spreading function used for distributing costs cver time was originally
developed by E. D. Lupo, !ASA-JSC. The concept was further deveioped by A,
Ferguson, also of HASA-JSC (Reference 1). The cumulative cost curve, expressed
as a fractional-cost, fractional-time relationships, is:

C(t) = A{16t2 - 20t3 + 10t*) + B{10t3 - 20t* + 10t5) + (5t* - 4t3) [1]
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where t is the ‘raction of time elapsed in the program and C(t) is the fraction
of cost consumed at time t. Both ¢ and C{t) are constrainec to the interval
(0,1). The cost rate curve (which is the derivativé of the cumulative cost
curve) can be expressed as:

Cl(t) = A[20t(1-t)31 + B[30t2(1—t)2] + (1—A-B)[20t3(1—t)] £z}

T+ can be seen that the cost rate curve is a convex corbination of three
integral Beta probability “functions where the narameters A, B, and (7-A-3) are
+he relative weights given to the three Eeta curves. Since the weights must be
non-negative values, then A28, B20, and A+B5%. Although different combdinations
of A and B vield different cumulative cost curves, ail solutions fall within
the envelope shown graphically in Ficure 1 anc are monotonically increasing.

Lese jimits can be readily understocd by referring to Figure 2 which presenis
sna three Deta curves separately. ihen A=1, 3=0, the cost rate curve nocels an
extremely fast-starting nrogram with 2z slow finish; when A=C, B=0, the cost
rate curve models a program with a slow start and an extremely fast finish.
Thus extremes in cost rate curves cevine +he envelose of the cumulative cost
curve shown in Figure 1. All other zaasible combinations of £ and 2 result in
cumultive cost curves falling within these limits,

3ETA CURVE I TERN'S OF P AND T

Seta curve characteristics are often defined in terms of a hal{-way cost
fraction {denoted by the letter T) and a peakedness coefficient (denoted by the
letter P). The half-way cost sraction is defined as the fraction of cost
consuried when one-half of the program time is spent. As an iilustration, the
value of the parameter T is npresentec vor +4e three cost rate curves shown in
Figure 2. Due to the nature of the De=a curve as cafined by tquation "1, T is
constrained to values betueen 0.1875 and 0.8125, inclusive. The parameter, 2,
is 3 nunber betueen J and 1 which represents a relztive measure of the
seakedness of the cost rate curve. .ne rost peaked (i.e., least spreac out)
cost rate curve is represented by P=1. The jeast peaked (i.e., most spread
out) is represented by P=0. It i interesting to note that, as T appreaches
its limits of 0.1875 or 0.3125, the effect cf the peakedness coefficient is
reduced since, for ihese two values of T, unique spreading functions cccur.
Figure 3 presents the efvect of P on the cost rate curve,

The following equations relate the T and P parameters <o the cost rate curve
weighting factors, A and B:
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T = 0.625A + 0.3125B + 0.1875 3]
P = 0.31258/(0.625A + 0,3125) T < 0.5 [2A]
P = 0.3125B/(0.625 - 0.3125A - 0.6258) T > 0.5 fas]

APPRCACH

Tvpically the data that ere available Tor an an-going progran are cumulative
srogram costs at various dates into =he program. I7 there are af these data
soints, these can be exoressed in the Torm (D, , X.) where i=1, 2, 3, ... mand
where D is the date for which the cumulative ost, K, is known. Since these’
are actual costs and dates, they mus:t he converted t¢ fractional-tines and
fractional-costs in order to be consisient with the form of Rauati 3

Lide

on

The first. step, expressing each of the dates, n, in terms of the fractional
" program time, t, is accomplished with the following relationship:

- D5 - Dstart -
70D D L5-
end - “start

Finding a scaling factor which expresses each of the cumuiative progran costs,
K, as a fractional-cost, is the next step. In fact, the problem can be
Zopnulated such that the calculation of the scaling factor will immediately
vield the EAC of the program.

Let the criterion for the best fit oF £he zctual cumulative cost data to c{t)
Se defined as the selection of that scaling factor wiich minimizes the sum of
the Jeast square (SLS). However, since the spending nattern becanes hetter
defined the later into a program you are, sne later time points will be rore
indicative of program completion cosis snan earlier ones. hence, the standard
SLS method should be rodified to give rore weioht to the later tine points.
The weighting scheme selected was o use fractional-time cubed as this
weighting factor. Thus the best it criterion hecomes a
weighted-sum-of-least-squares (1ISLS) expression: itinimize,

™
ih
§.d

- . .23
F = wsts =8, [C(t) - YKt

where Y is the scaling factor and c(+) is defined in Equation i,
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DISCUSSION OF COMPUTATIONAL TECHNIQUES

There are several ways to approach the solution to Equation Tal. First,
however, Equation 5] should be examined to determine what the variables are.
The scaling factor, Y, is obviously a variable, whereas the K 's and t 's are
constants. Since C(%) is a function of A and B, Equation F6] implicitly
requires choices for the values of A and O as well, ‘hether they are treatec
as constants or as variables depends on the computational method used. Cne
computational method is simply to assign arbitrary values to A and 8 and then
solve for Y. The values %o be assigned might, Tor examnle, come from another
engineering progran of similar size, complexity, and scope for which these
values have been computed from historical cata, IF this methed is usead, A and
5 bacome constants in Zguation (6], The scaling factor, Y, corrasnonding 0
the oinimum VSLS can then be computed by tha standard calculus techninue of
setting the First derivative equal to zero and solving:

T 3 :
L TC(EL KL, : r71
Yopt = §7V00 ‘7
LI T B -
£t. %K.
— 3 i 1
The principle disadvantage to this retliod is the Fack that progreams de ziffer
2ron one another recardless of how sinilar thay may appear to be, Thus,
assigning a narticular shape of the Teta curve tc 2 new program nay not
adecuately allow For its uniqueness.

In recognition of this limitation another approach would be %o use values for A
and B which allow the shane of the Beta curve ©0 be such that it hest fits ths
cost-time datz that the progranm has already experienced. Thus, unlike the
~revious case where the parameters A ard & were specified, in this case and 2
are treated as variables and the "best £it" is simply that combinatior of &, ©,
and ¥ which ninimizes Equation [8]. There are several comnutational technicues
shat could be usec to sclve this probien. Thres of these nethods (exhaustive
search, partial derivatives, and quadretic programaing) are described in the
ar

a &
o I N R aTs S ¥ '
:ull\}‘-‘m-!a - c.ul"a-,u.s.

n the exihaust T
ver all the feaz
sceling facter {from E£q
values for A&, B, and Y u
smallest MiSLS value. re rmajor disadvantage of +his techniaue is tinai the
clcorithn can become somewhat involved since it rust be set up to search in
discrete increments for A and B {such as 0.01) that are corputational
manageable and then recycled o finer increrents as the true optinum is
approached if increased accuracy is desired.
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£ rmore analytical approach is to use nartial derivatives to set up a systen of

three equations in three unknovms, fquation [1] can be rewritten:

-~

c{t) = Ao+ Bg + ¥ ral
where; 2 3 4
< = 70t -~ 20t + 10t [9a]
3 4 5
g = 10t - 20t + 10t res?
b 5
¥ = 5t -4t fac]
Therefore, the nroblen is to minimize:
2 3
F = WSLS =5 [Aa, + BB, + ¥, - ¥YK.]t, riol
7 i i i i“ 73
aF _ ,; . ®. r11A2
2R 2%[A°ﬁ + Bai" Xi - YKi]:iti = 0 <
_é-E = ryint
&~ 2z[A=, +BR, + . - YK ]3.t.3 =0 -
ar . Z;EAdl + 881 + ”7 YK1 ! 13 = 117
ar iy SRR S

i
se Jinear equations results which can
g, and Y.

-

A€ter rearranging terms, a set of th
be easily solved for the unknowns A,

—t

The primery drawbach to this computational schame js that there is no assurance
that the solution to these eauations i1l result in non-ncgative values Tor 2
and 8. This disadvantage can e overcome, however, by extending the

comoutational schere to include boundary condition checks such that when one is
exceeded, the corresponcaing variable is set equal to the boundary value and the
other variables recomputed.

» third approach would he o formulate +he problem as a guadratic aroaranning
Zorm. lsing the notation introducec in Zquations [8] and [91, the problem is
te mininize:

- = - - 12+ 3 22
F = WSLS g[Adi + B8, ?i YK, #ty° :
1 ~ 2l

subject to: 6=A+8B<] A>0,8B>0

This is a standard quadratic prograrning arotler which can be restated and
solved as a linear nrogranming probies. (Reference 2). Its advantage over the
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nrevious method is that the computational algorithm autcmatically insures that
the solution will involve only non-negative values for the variables.

CALCULATION

ilhichever method is selected to calculd
scaling factor, Y, the following relet

YK, = C(t;)

Zquation [1£] can be used to estimate
future time interest. For the time 1o
nrogram,

But Kpyp = EAC and C(tEND) = C{1) = 1.

R
EAC = 7V

OF PROGRAM EAC

ate the parameters, A and B and the
ionship exists for any data point,

[14]

=he curulative program cost for any
int corresponding to the end oF the

-t
o
(93]

[y }

Therefore,

16l



Aug 18 05 09:45a Edna Dawson 256-971-6439 p.9S

REFERENCES

1. Estimation of Program Comnletion Cost; Ferguson, Aubin F.; MSC Internal
Note No. 6/-ET-11, June 1967.

2. .Mathematical Programming; McMillan, Claude; John Wiley & Sens, Inc., 1970.




Aug 18 0S 08

FRACTIONAL PROGRAM COST, c(t)

:145a

1.0

g.8

(=]
L]
o

\

0.4

0.2

Edna Dawson 256-871-6439 P
Z
CD"\/
.
/ )
4
R
0.25 0.50 0.75 1.0

FRACTIORAL PROGRAN TINME, t

C(t)=.A (1ct%-20t 3 +10t4)+B(10t3-20t4+10t5)+(5t4-4t

@ A=1.02nd B=0.0"
@ A =0.0and B = 0.0

5)

FIGURE ]

.10



p.11

256-971-6439

Edna Dawson

45a

Aug 18 05 08

¢ NN

1 VAWIL TWNOTLOVHS

(0=8 104V )} 3810 v L®
(1=g f0-v) 0§°0 = L@
(0=8 tt=¥) §218°0 » LD

*¥2INID 40 LHOTY O L4371 OL 3AUAD SKIAS SIHL
"IHIL %06 A8 kzumm 1$02 % JHL SILYIIGNI L YILIWVHVd

1 »

3AND ALvY 1503 NO 1 ¥IL3Wvdvd 40 13443

*31vd 1500 TYNOILIVd

op

1
2



256-871-6439 p.l2

Edna Dawson

4B6a

Aug 18 0S5 09

€ U914

1 *IWIL TYNOTLIVH

‘0 o E°0 2’0 10 0
{

oL 60 w0 Lo 90 8
} { } } } { _. “ -0
N : \ Lot
./. .
0'0 = d® +0'2
g0 « d@
gL = mﬁv : iﬁa.n

f
*WVyo0ud IHL 40 1V dng1ing 3L oL $31YT13YH0) SIHL

30D 31v¥ 1500 ML 40 §SINAVId 3HL SILVOIONI *d YILIWVYV -

JAUND 3LvY LS00 NO d y3LINvivd 40 103443

3
-(5%9— 1rve 1503 TYNOILOYYS



